.. default-role:: math
.. _sec-nonlocal-heatflux:
Nonlocal heat flux models
=========================
Spitzer-Harm heat flux
----------------------
The Spitzer-Harm heat flux `q_{SH}` is calculated using
.. math::
q_{SH} = - \frac{n_e e T_e}{m_e}\frac{3\sqrt{\pi}}{4}\tau_{ei,T}\kappa_0\frac{Z+0.24}{Z+4.2} \partial_{||} T_e
where `n_e` is the electron density in `m^{-3}`, `T_e` is the electron temperature in eV, `\kappa_0 = 13.58`,
`Z` is the average ion charge. The resulting expression is in units of `eV/m^2/s`.
The thermal collision time `\tau_{ei,T} = \lambda_{ei,T} / v_{T}` is calculated using the thermal mean free path
and thermal velocity:
.. math::
\lambda_{ee,T} = \frac{v_T^4}{Yn_e \ln\Lambda}
\lambda_{ei,T} = \frac{v_T^4}{YZ^2n_i \ln\Lambda}
v_T = \sqrt{\frac{2eT_e}{m_e}}
where it is assumed that `n_i = n_e`, and the following are used:
.. math::
Y = 4\pi\left(\frac{e^2}{4\pi \epsilon_0 m_e}\right)^2
\ln\Lambda = 6.6 - 0.5\log\left(\frac{n_e}{10^{20}}\right) + 1.5 \log\left(T_e\right);
Note: If comparing to `online notes `_,
`\kappa_0\frac{Z+0.24}{Z+4.2} \simeq 3.2`, a different definition of collision time `\tau_{ei}` is used here,
but the other factors are included so that the heat flux `q_{SH}` is the same here as in those notes.
SNB model
---------
The SNB model calculates a correction to the Spitzer-Harm heat flux, solving a
diffusion equation for each of a set of energy groups with normalised
energy `\beta = E_g / eT_e` where `E_g` is the energy of the group.
.. math::
\left[\frac{1}{\lambda'_{g,ee}} - \nabla_{||}\left(\frac{\lambda'_{g,ei}}{3}\partial_{||}\right)\right]H_g = -\nabla_{||} U_g
where `\nabla_{||}` is the divergence of a parallel flux, and `\partial_{||}` is a parallel gradient.
`U_g = W_g q_{SH}` is the contribution to the Spitzer-Harm heat flux from a group:
.. math::
W_g = \frac{1}{24}\int_{\beta_{g-1}}^{\beta^{g+1}} \beta^4 e^{-\beta} d\beta
The modified mean free paths for each group are:
.. math::
\lambda'_{g,ee} = \beta^2 \lambda_{ee,T} / r
\lambda'_{g,ei} = \beta^2 \lambda_{ei,T} \frac{Z + 0.24}{Z + 4.2}
From the quantities `H_g` for each group, the SNB heat flux is:
.. math::
q_{SNB} = q_{SH} - \sum_g\frac{\lambda_g,ei}{3}\nabla H_g
In flud models we actually want the divergence of the heat flux, rather than the heat flux itself.
We therefore rearrange to get:
.. math::
\nabla_{||}\left(\frac{\lambda'_{g,ei}}{3}\partial_{||}\right)H_g = \nabla_{||} U_g + H_g / \lambda'_{g,ee}
and so calculate the divergence of the heat flux as:
.. math::
\nabla_{||} q_{SNB} = \nabla_{||} q_{SH} - \sum_g\left(\nabla_{||} U_g + H_g / \lambda'_{g,ee}\right)
The Helmholtz type equation along the magnetic field is solved using a tridiagonal solver.
The parallel divergence term is currently split into a second derivative term, and a first derivative correction:
.. math::
\nabla_{||}\left(k\partial_{||} T\right) = \frac{1}{J}\frac{\partial}{\partial y}\left(\frac{k J}{g_{22}}\frac{\partial T}{\partial y}\right)
= k\frac{1}{g_22}\frac{\partial^2 T}{\partial y^2} + \frac{1}{J}\frac{\partial}{\partial y}\left(\frac{k J}{g_{22}}\right)\frac{\partial T}{\partial y}
Using the SNB model
~~~~~~~~~~~~~~~~~~~
To use the SNB model, first include the header::
#include
then create an instance::
HeatFluxSNB snb;
By default this will use options in a section called "snb", but if
needed a different ``Options&`` section can be given to the constructor::
HeatFluxSNB snb(Options::root()["mysnb"]);
The options are listed in table :numref:`tab-snb-options`.
.. _tab-snb-options:
.. table:: SNB options
+--------------+---------------------------------------------------+---------------+
| Name | Meaning | Default value |
+==============+===================================================+===============+
| ``beta_max`` | Maximum energy group to consider (multiple of eT) | 10 |
| ``ngroups`` | Number of energy groups | 40 |
| ``r`` | Scaling down the electron-electron mean free path | 2 |
+--------------+---------------------------------------------------+---------------+
The divergence of the heat flux can then be calculated::
Field3D Div_q = snb.divHeatFlux(Te, Ne);
where ``Te`` is the temperature in eV, and ``Ne`` is the electron density in `m^{-3}`.
The result is in eV per `m^3` per second, so multiplying by `e=1.602\times 10^{-19}` will give
Watts per cubic meter.
To compare to the Spitzer-Harm result, pass in a pointer to a
``Field3D`` as the third argument. This field will be set to the
Spitzer-Harm value::
Field3D Div_q_SH;
Field3D Div_q = snb.divHeatFlux(Te, Ne, &Div_q_SH);
This is used in the examples discussed below.
Example: Linear perturbation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. highlight:: console
The ``examples/conduction-snb`` example calculates the heat flux for a
given density and temperature profile, comparing the SNB and
Spitzer-Harm fluxes. The ``sinusoidal.py`` case uses a periodic
domain of length 1 meter and a small (0.01eV) perturbation to the
temperature. The temperature is varied from 1eV to 1keV, so that the
mean free path varies. This is done for different SNB settings,
changing the number of groups and the maximum `\beta`::
$ python sinusoid.py
This should output a file ``snb-sinusoidal.png`` and display the results,
shown in figure :numref:`fig-snb-sinusoidal`.
.. _fig-snb-sinusoidal:
.. figure:: ../figs/snb-sinusoidal.*
:alt: When the mean free path is short, the SNB heat flux is close
to the Spitzer-Harm value. When the mean free path is long,
the ratio goes towards zero.
The ratio of SNB heat flux to Spitzer-Harm heat flux, as a function
of electron mean free path divided by temperature perturbation
wavelength. Note that the difference between SNB and Spitzer-Harm
becomes significant (20%) when the mean free path is just 1% of the
wavelength.
Example: Nonlinear heat flux
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A nonlinear test is also included in ``examples/conduction-snb``, a step function in temperature
from around 200eV to 950eV over a distance of around 0.1mm, at an electron density of 5e26 per cubic meter::
$ python step.py
This should output a file ``snb-step.png``, shown in figure :numref:`fig-snb-step`.
.. _fig-snb-step:
.. figure:: ../figs/snb-step.*
:alt: The SNB peak heat flux in the steep gradient region is lower
than Spitzer-Harm by nearly a factor of 2. In the cold region
the SNB heat flux is above the Spitzer-Harm value, and is
nonzero in regions where the temperature gradient is zero.
Temperature profile and heat flux calculated using Spitzer-Harm and
the SNB model, for a temperature step profile, at a density of 5e26
per cubic meter. Note the reduction in peak heat flux (flux limit)
and higher flux in the cold region (preheat) with the SNB model.