zoidberg package#
Module contents#
- zoidberg.make_maps(grid, magnetic_field, nslice=1, quiet=False, **kwargs)#
Make the forward and backward FCI maps
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objectnslice (int) – Number of parallel slices in each direction
quiet (bool) – Don’t display progress bar
kwargs – Optional arguments for field line tracing, etc.
- Returns:
Dictionary containing the forward/backward field line maps
- Return type:
dict
- zoidberg.write_maps(grid, magnetic_field, maps, gridfile='fci.grid.nc', new_names=False, metric2d=True, format='NETCDF3_64BIT', quiet=False)#
Write FCI maps to BOUT++ grid file
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objectmaps (dict) – Dictionary of FCI maps
gridfile (str, optional) – Output filename
new_names (bool, optional) – Write “g_yy” rather than “g_22”
metric2d (bool, optional) – Output only 2D metrics
format (str, optional) – Specifies file format to use, passed to boutdata.DataFile
quiet (bool, optional) – Don’t warn about 2D metrics
- Return type:
Writes the following variables to the grid file
Submodules#
zoidberg.boundary module#
Boundary objects that define an ‘outside’
- class zoidberg.boundary.NoBoundary#
No boundary, so no points outside
- outside(x, y, z)#
Returns True if the point is outside the boundary
- Parameters:
x, y, z (array_like) – Coordinates of the point(s) to check
- Returns:
True if point is outside boundary
- Return type:
bool
zoidberg.field module#
- class zoidberg.field.CurvedSlab(By=1.0, Bz=0.1, xcentre=0.0, Bzprime=1.0, Rmaj=1.0)#
Represents a magnetic field in a curved slab geometry
Magnetic field in
z = Bz + (x - xcentre) * Bzprime
x - Distance in radial direction [m] y - Azimuthal (toroidal) angle z - Height [m]
- Parameters:
By (float) – Magnetic field in y direction
Bz (float) – Magnetic field in z at xcentre (float)
xcentre (float) – Reference x coordinate
Bzprime (float) – Rate of change of Bz with x
Rmaj (float) – Major radius of the slab
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- class zoidberg.field.DommaschkPotentials(A, R_0=1.0, B_0=1.0)#
A magnetic field generator using the Dommaschk potentials. :Parameters: * A (Coefficient matrix for the torodial and polidial harmonics. Form: (m,l,(a,b,c,d)))
R_0 (major radius [m])
B_0 (magnetic field on axis [T])
Important Methods
—————–
Bxfunc/Byfunc/Bzfunc(x,z,y) (Returns magnetic field in radial/torodial/z-direction)
Sfunc(x,z,y) (Returns approximate magnetic surface invariant for Dommaschk potentials. Use this to visualize flux surfaces)
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- CD(m, k)#
- Parameters:
m (torodial harmonic)
k (summation index in D)
Returns
——–
Sympy function CD_mk (R) (Dirichlet boudary conditions)
- CN(m, k)#
- Parameters:
m (torodial harmonic)
k (summation index in N)
Returns
——–
Sympy function CN_mk (R) (Neumann boundary conditions)
- D(m, n)#
- Parameters:
m (torodial mode number)
n (summation index in V)
Returns
——–
Sympy function D_mn (R, Z) (Dirichlet boundary conditions)
- N(m, n)#
- Parameters:
m (torodial mode number)
n (summation index in V)
Returns
——–
Sympy function N_mn (R, Z) (Neumann boundary conditions)
- Rfunc(x, z, phi)#
- Parameters:
x (radial coordinates normalized to R_0)
z (binormal coordinate)
y (torodial angle normalized to 2*pi)
- Return type:
Radial coordinate x
- Sfunc(x, z, y)#
- Parameters:
x (radial coordinates normalized to R_0)
z (binormal coordinate)
y (torodial angle normalized to 2*pi)
- Return type:
Approximate magnetic surface invariant S at location (x,z,y). This is from the original Dommaschk paper. Use to visualize flux surfaces
- U(A)#
- Parameters:
A (Coefficient matrix for the torodial and polidial harmonics. Form: (m,l,(a,b,c,d)))
- Returns:
U
- Return type:
Superposition of all modes given in A
- U_hat(A)#
- Parameters:
A (Coefficient matrix for the torodial and polidial harmonics. Form: (m,l,(a,b,c,d)))
- Returns:
U
- Return type:
Superposition of all modes given in A
- V(m, l, a, b, c, d)#
- Parameters:
m (torodial mode number)
l (polodial mode number)
a,b,c,d (Coefficients for m,l-th Dommaschk potential (elements of matrix A))
Returns
——–
Sympy function V_ml
- V_hat(m, l, a, b, c, d)#
- Parameters:
m (torodial mode number)
l (polodial mode number)
a,b,c,d (Coefficients for m,l-th Dommaschk potential (elements of matrix A))
Returns
——–
Sympy function V_hat_ml; Similar to V; needed for calculation of magnetic surface invariant S
- class zoidberg.field.GEQDSK(gfile)#
Read a EFIT G-Eqdsk file for a toroidal equilibrium
This generates a grid in cylindrical geometry
- Parameters:
gfile (str) – Name of the file to open
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- pressure(x, z, phi)#
Pressure [Pascals]
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The plasma pressure
- Return type:
ndarray
- class zoidberg.field.MagneticField#
Represents a magnetic field in either Cartesian or cylindrical geometry
This is the base class, you probably don’t want to instantiate one of these directly. Instead, create an instance of one of the subclasses.
Functions which can be overridden
Bxfunc = Function for magnetic field in x
Bzfunc = Function for magnetic field in z
Byfunc = Function for magnetic field in y (default = 1.)
Rfunc = Function for major radius. If None, y is in meters
- boundary#
An object with an “outside” function. See
zoidberg.boundary
- attributes#
Contains attributes to be written to the output
- Type:
A dictionary of string -> function(x,z,phi)
See also
Slab
A straight field in normal Cartesian coordinates
CurvedSlab
A field in curvilinear coordinates
StraightStellarator
A rotating ellipse stellarator without curvature
RotatingEllipse
A rotating ellipse stellarator with curvature
VMEC
A numerical field from a VMEC equilibrium file
GEQDSK
A numerical field from an EFIT g-file
- Bmag(x, z, phi)#
Magnitude of the magnetic field
\[Bmag = \sqrt(B_x^2 + B_y^2 + B_z^2)\]- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The magnitude of the magnetic field
- Return type:
ndarray
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- attributes = {}#
- boundary = <zoidberg.boundary.NoBoundary object>#
- field_direction(pos, ycoord, flatten=False)#
Calculate the direction of the magnetic field Returns the change in x with phi and change in z with phi
- Parameters:
pos (ndarray) – 2-D NumPy array, with the second dimension being [x,z], with x and z in meters
ycoord (float) – Toroidal angle in radians if cylindrical coordinates, metres if Cartesian
flatten (bool, optional) – If True, return a flattened form of the vector components. This is useful for passing to
FieldTracer
- Returns:
(dx/dy, dz/dy) –
= (R*Bx/Bphi, R*Bz/Bphi)
if cylindrical= (Bx/By, Bz/By)
if Cartesian
- Return type:
list of floats or ndarray
- pressure(x, z, phi)#
Pressure [Pascals]
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The plasma pressure
- Return type:
ndarray
- class zoidberg.field.RotatingEllipse(xcentre=0.0, zcentre=0.0, radius=0.8, yperiod=3.141592653589793, I_coil=0.05, Btor=1.0, smooth=False, smooth_args={})#
A “rotating ellipse” stellarator :Parameters: * xcentre (float, optional) – Middle of the domain in x [m]
zcentre (float, optional) – Middle of the domain in z [m]
radius (float, optional) – Radius of coils [meters]
yperiod (float, optional) – The period over which the coils return to their original position
I_coil (float, optional) – Current in each coil
Btor (float, optional) – Toroidal magnetic field strength
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- coil(xcentre, zcentre, radius, angle, iota, I)#
Defines a single coil :Parameters: * radius (float) – Radius to coil
angle (float) – Initial angle of coil
iota (float) – Rotational transform of coil
I (float) – Current through coil
- Return type:
(x, z) - x, z coordinates of coils along phi
- class zoidberg.field.Screwpinch(xcentre=1.5, zcentre=0.0, shear=0, yperiod=6.283185307179586, Btor=1.0)#
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- class zoidberg.field.Slab(By=1.0, Bz=0.1, xcentre=0.0, Bzprime=1.0)#
Represents a magnetic field in an infinite flat slab
Magnetic field in
z = Bz + (x - xcentre) * Bzprime
Coordinates (x,y,z) assumed to be Cartesian, all in metres
- Parameters:
By (float, optional) – Magnetic field in y direction
Bz (float, optional) – Magnetic field in z at xcentre
xcentre (float, optional) – Reference x coordinate
Bzprime (float, optional) – Rate of change of Bz with x
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- class zoidberg.field.SmoothedMagneticField(field, grid, xboundary=None, zboundary=None)#
Represents a magnetic field which is smoothed so it never leaves the boundaries of a given grid.
- Parameters:
field (
zoidberg.field.MagneticField
) – A MagneticField objectgrid (
zoidberg.grid.Grid
) – A Grid objectxboundary (int, optional) – Number of grid points in x over which the magnetic field is smoothed
zboundary (int, optional) – Number of grid points in x over which the magnetic field is smoothed
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Not modified by smoothing
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- smooth_field_line(xa, za)#
Linearly damp the field to be parallel to the edges of the box
Should take some parameters to adjust rate of smoothing, etc.
- class zoidberg.field.StraightStellarator(xcentre=0.0, zcentre=0.0, radius=0.8, yperiod=3.141592653589793, I_coil=0.05, smooth=False, smooth_args={})#
A “rotating ellipse” stellarator without curvature
- Parameters:
xcentre (float, optional) – Middle of the domain in x [m]
zcentre (float, optional) – Middle of the domain in z [m]
radius (float, optional) – Radius of coils [meters]
yperiod (float, optional) – The period over which the coils return to their original position
I_coil (float, optional) – Current in each coil
- coil(xcentre, zcentre, radius, angle, iota, I)#
Defines a single coil
- Parameters:
radius (float) – Radius to coil
angle (float) – Initial angle of coil
iota (float) – Rotational transform of coil
I (float) – Current through coil
- Return type:
(x, z) - x, z coordinates of coils along phi
- class zoidberg.field.VMEC(vmec_file, ntheta=None, nzeta=None, nr=32, nz=32)#
A numerical magnetic field from a VMEC equilibrium file
- Parameters:
vmec_file (str) – Name of the VMEC file to read
ntheta (int, optional) – Number of theta points to use (default: use ‘mpol’ from VMEC file)n
nzeta (int, optional) – Number of zeta points to use (default: use ‘ntor’ from VMEC file)
nr (int) – Number of R points to use
nz (int) – Number of Z points to use
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- Rfunc(x, z, phi)#
Major radius
- cfunct(field)#
VMEC DCT
- read_vmec_file(vmec_file, ntheta=None, nzeta=None)#
Read a VMEC equilibrium file
- sfunct(field)#
VMEC DST
- class zoidberg.field.W7X_VMEC(nx=512, ny=32, nz=512, x_range=[4.05, 6.55], z_range=[-1.35, 1, 35], phi_range=[0, 6.283185307179586], vmec_id='w7x_ref_171')#
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- field_values(r, phi, z, vmec_id='w7x_ref_171')#
- class zoidberg.field.W7X_vacuum(nx=128, ny=32, nz=128, x_range=(4.05, 6.55), z_range=(-1.35, 1, 35), phimax=6.283185307179586, configuration=0, plot_poincare=False, include_plasma_field=False, wout_file='wout_w7x.0972_0926_0880_0852_+0000_+0000.01.00jh.nc')#
- Bxfunc(x, z, phi)#
Magnetic field in x direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
X-component of the magnetic field
- Return type:
ndarray
- Byfunc(x, z, phi)#
Magnetic field in y direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Y-component of the magnetic field
- Return type:
ndarray
- Bzfunc(x, z, phi)#
Magnetic field in z direction at given coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
Z-component of the magnetic field
- Return type:
ndarray
- Rfunc(x, z, phi)#
Major radius [meters]
Returns None if in Cartesian coordinates
- Parameters:
x, z, phi (array_like) – X, Z, and toroidal coordinates
- Returns:
The major radius
- Return type:
ndarray
- field_values(phi, z, configuration=0, plot_poincare=False)#
This uses the webservices field line tracer to get the vacuum magnetic field given 3d arrrays for R, phi, and Z. Only works on IPP network
http://webservices.ipp-hgw.mpg.de/docs/fieldlinetracer.html
Contact brendan.shanahan@ipp.mpg.de for questions
- magnetic_axis(phi_axis=0, configuration=0)#
- plasma_field(phi, z, wout_file='wout.nc')#
This uses EXTENDER via the IPP webservices to get the magnetic field from the plasma given 3d arrrays for R, phi, and Z. Only works on IPP network
http://webservices.ipp-hgw.mpg.de/docs/extender.html
Contact brendan.shanahan@ipp.mpg.de for questions
zoidberg.fieldtracer module#
- class zoidberg.fieldtracer.FieldTracer(field)#
A class for following magnetic field lines
- Parameters:
field (
MagneticField
) – A Zoidberg MagneticField instance
- follow_field_lines(x_values, z_values, y_values, rtol=None)#
Uses field_direction to follow the magnetic field from every grid (x,z) point at toroidal angle y through a change in toroidal angle dy
- Parameters:
x_values (array_like) – Starting x coordinates
z_values (array_like) – Starting z coordinates
y_values (array_like) – y coordinates to follow the field line to. y_values[0] is the starting position
rtol (float, optional) – The relative tolerance to use for the integrator. If None, use the default value
- Returns:
result – Field line ending coordinates
The first dimension is y, the last is (x,z). The middle dimensions are the same shape as [x|z]: [0,…] is the initial position […,0] are the x-values […,1] are the z-values If x_values is a scalar and z_values a 1D array, then result has the shape [len(y), len(z), 2], and vice-versa. If x_values and z_values are 1D arrays, then result has the shape [len(y), len(x), 2]. If x_values and z_values are 2D arrays, then result has the shape [len(y), x.shape[0], x.shape[1], 2].
- Return type:
numpy.ndarray
- class zoidberg.fieldtracer.FieldTracerReversible(field, rtol=1e-08, eps=1e-05, nsteps=20)#
Traces magnetic field lines in a reversible way by using trapezoidal integration:
\[pos_{n+1} = pos_n + 0.5*( f(pos_n) + f(pos_{n+1}) )*dy\]This requires a Newton iteration to solve the nonlinear set of equations for the unknown
pos_{n+1}
.- Parameters:
field (
MagneticField
) – A Zoidberg MagneticField instancertol (float, optional) – Tolerance applied to changes in dx**2 + dz**2
eps (float, optional) – Change in x,z used to calculate finite differences of magnetic field direction
nsteps (int, optional) – Number of sub-steps between outputs
- follow_field_lines(x_values, z_values, y_values, rtol=None, eps=None, nsteps=None)#
Uses field_direction to follow the magnetic field from every grid (x,z) point at toroidal angle y through a change in toroidal angle dy
- Parameters:
x_values (array_like) – Starting x coordinates
z_values (array_like) – Starting z coordinates
y_values (array_like) – y coordinates to follow the field line to. y_values[0] is the starting position
rtol (float, optional) – Tolerance applied to changes in dx**2 + dz**2. If None, use the default value
eps (float, optional) – Change in x,z used to calculate finite differences of magnetic field direction
nsteps (int, optional) – Number of sub-steps between outputs
- Returns:
result – Field line ending coordinates
The first dimension is y, the last is (x,z). The middle dimensions are the same shape as [x|z]: [0,…] is the initial position […,0] are the x-values […,1] are the z-values If x_values is a scalar and z_values a 1D array, then result has the shape [len(y), len(z), 2], and vice-versa. If x_values and z_values are 1D arrays, then result has the shape [len(y), len(x), 2]. If x_values and z_values are 2D arrays, then result has the shape [len(y), x.shape[0], x.shape[1], 2].
- Return type:
numpy.ndarray
- zoidberg.fieldtracer.trace_poincare(magnetic_field, xpos, zpos, yperiod, nplot=3, y_slices=None, revs=20, nover=20)#
Trace a Poincare graph of the field lines
Does no plotting, see
zoidberg.plot.plot_poincare()
- Parameters:
magnetic_field (
MagneticField
) – Magnetic field objectxpos, zpos (array_like) – Starting X, Z locations
yperiod (float) – Length of period in y domain
nplot (int, optional) – Number of equally spaced y-slices to trace to
y_slices (list of ints) – List of y-slices to plot; overrides
nplot
revs (int, optional) – Number of revolutions (times around y)
nover (int, optional) – Over-sample. Produced additional points in y then discards. This seems to be needed for accurate results in some cases
- Returns:
coords is a Numpy array of data:
[revs, nplot, ..., R/Z]
where the first index is the revolution, second is the y slice, and last is 0 for R, 1 for Z. The middle indices are the shape of the input xpos,zpos
- Return type:
coords, y_slices
zoidberg.grid module#
- class zoidberg.grid.Grid(poloidal_grids, ycoords, Ly, yperiodic=False, name='fci_grid')#
Represents a 3D grid, consisting of a collection of poloidal grids
- shape#
Tuple of grid sizes (nx, ny, nz)
- Type:
(int, int, int)
- Parameters:
poloidal_grids (
list
ofPoloidalGrid
) – The collection of poloidal grids to group togetherycoords (array_like) – The y-coordinate corresponding to each element of
poloidal_grids
Examples
>>> poloidal_grids = [RectangularPoloidalGrid(5, 5, 1, 1)] >>> ycoords = [0.0] >>> grid = Grid(poloidal_grids, ycoords)
To iterate over the poloidal grids, and get the grids to either side:
>>> for i in range(grid.numberOfPoloidalGrids()): ... pol, y = grid.getPoloidalGrid(i) ... pol_next, y_next = grid.getPoloidalGrid(i+1) ... pol_last, y_last = grid.getPoloidalGrid(i-1)
The
getPoloidalGrid
method ensures thaty_last <= y <= y_next
- getPoloidalGrid(yindex)#
Returns the poloidal grid and y value at the given y index
This handles negative values and values out of range, if the domain is periodic
- Parameters:
yindex (int) – The desired index in y
- Returns:
PoloidalGrid
– The poloidal grid atyindex
float – The value of the y coordinate at
yindex
- metric()#
Return the metric tensor, dx and dz
- Returns:
Dictionary containing: - dx, dy, dz: Grid spacing - gxx, gxz, gyy, gzz: Covariant components - g_xx, g_xz, g_yy, g_zz: Contravariant components
- Return type:
dict
- numberOfPoloidalGrids()#
Returns the number of poloidal grids i.e. number of points in Y
- Returns:
Number of poloidal grids
- Return type:
int
- zoidberg.grid.rectangular_grid(nx, ny, nz, Lx=1.0, Ly=10.0, Lz=1.0, xcentre=0.0, zcentre=0.0, yperiodic=False)#
Create a rectangular grid in (x,y,z)
Here y is along the magnetic field (typically toroidal angle), and (x,z) are in the poloidal plane
- Parameters:
nx, ny, nz (int) – Number of points in x, y, z
Lx, Ly, Lz (float, optional) – Size of the domain in x, y, z
xcentre, zcentre (float, optional) – The middle of the domain
yperiodic (bool, optional) – Determines if the y direction is periodic
- Returns:
A
Grid
representing a rectangular domain- Return type:
Grid
zoidberg.plot module#
- class zoidberg.plot.AnimateVectorField(X, Y, U, V)#
Very basic/experimental class for animating vector fields
Transpose U, V to have dimension to animate at index 0, e.g. to animate along y, pass:
>>> AnimateVectorField(X, Y, U.transpose((1,0,2)), V.transpose((1,0,2)))
- Parameters:
X, Y (array_like) – The X, Y coordinates
U, V (ndarray) – Vector components in X, Y respectively
Examples
>>> anim = AnimateVectorField(X, Y, U, V) >>> anim.animate()
- animate()#
- zoidberg.plot.plot_3d_field_line(magnetic_field, xpos, zpos, yperiod, cycles=20, y_res=50)#
Make a 3D plot of field lines
- Parameters:
magnetic_field (
zoidberg.field.MagneticField
) – Magnetic field objectxpos, zpos (array_like) – Starting X, Z locations
yperiod (float) – Length of period in y domain
cycles (int, optional) – Number of times to go round in y
y_res (int, optional) – Number of points in y in each cycle
- Returns:
The matplotlib figure and axis used
- Return type:
fig, ax
- zoidberg.plot.plot_backward_map(grid, maps, yslice=0)#
Plots the backward map from yslice to yslice-1
- Parameters:
grid (‘zoidberg.grid.Grid`) – Grid generated by Zoidberg
maps (dict) – Dictionary containing the backward FCI maps
y_slice (int, optional) – Originating y-index to plot map from
- zoidberg.plot.plot_forward_map(grid, maps, yslice=0)#
Plots the forward map from
yslice
toyslice
+ 1- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmaps (dict) – Dictionary containing the forward FCI maps
y_slice (int, optional) – Originating y-index to plot map from
- zoidberg.plot.plot_poincare(magnetic_field, xpos, zpos, yperiod, nplot=3, y_slices=None, revs=40, nover=20, interactive=False)#
Plot a Poincare graph of the field lines.
- Parameters:
magnetic_field (
zoidberg.field.MagneticField
) – Magnetic field objectxpos, zpos (array_like) – Starting X, Z locations
yperiod (float) – Length of period in y domain
nplot (int, optional) – Number of equally spaced y-slices to plot
y_slices (list of int, optional) – List of y-slices to plot; overrides nplot
revs (int, optional) – Number of revolutions (times around phi)
interactive (bool, optional) – If True, plots can be interacted with via the mouse: - Left-click on the plot to trace a field-line from that point - Right-click to add an additional trace - Middle-click to clear added traces
- Returns:
The matplotlib figure and axis used
- Return type:
fig, ax
- zoidberg.plot.plot_streamlines(grid, magnetic_field, y_slice=0, width=None, **kwargs)#
Plot streamlines of the magnetic field in the poloidal plane
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objecty_slice (int, optional) – y-index to plot streamlines at
width (float, optional) – If not None, line widths are proportional to the magnitude of the
magnetic_field
timeswidth
- Returns:
The matplotlib figure and axis used
- Return type:
fig, ax
zoidberg.poloidal_grid module#
Routines for generating structured meshes on poloidal domains
Classes#
RectangularPoloidalGrid
Simple rectangles in R-Z
StructuredPoloidalGrid
Curvilinear structured grids in R-Z
Functions#
grid_annulus
Create a
StructuredPoloidalGrid
from inner and outer RZLine objects using a simple algorithmgrid_elliptic
Create a
StructuredPoloidalGrid
from inner and outer RZLine objects using elliptic meshing method
- class zoidberg.poloidal_grid.PoloidalGrid#
Represents a poloidal grid
Note: Here the 2D plane (R,Z) is labelled by (x,z) indices
- nx, nz
Number of points in x and z
- Type:
int
- R#
2D Numpy array of R coordinates
- Type:
ndarray
- Z#
2D Numpy array of Z coordinates
- Type:
ndarray
- plot(axis=None, show=True)#
Plot grid using matplotlib
- Parameters:
axis (matplotlib axis, optional) – A matplotlib axis to plot on. By default a new figure is created
show (bool, optional) – Calls plt.show() at the end
- Returns:
The matplotlib axis that was used
- Return type:
axis
- class zoidberg.poloidal_grid.RectangularPoloidalGrid(nx, nz, Lx, Lz, Rcentre=0.0, Zcentre=0.0, MXG=2)#
Represents a poloidal grid consisting of a rectangular domain
Note: Here the 2D plane (R,Z) is labelled by (x,z) indices
- nx, nz
Number of points in x and z
- Type:
int
- R#
2D Numpy array of R coordinates
- Type:
ndarray
- Z#
2D Numpy array of Z coordinates
- Type:
ndarray
- Parameters:
nx (int) – Number of points in major radius (including boundaries)
nz (int) – Number of points in height (including boundaries)
Lx (float) – Radial domain size [m]
Lz (float) – Vertical domain size [m]
Rcentre (float, optional) – Coordinate at the middle of the domain
Zcentre (float, optional) – Coordinate at the middle of the domain
MXG (int, optional) – Number of guard cells in X. The boundary is put half-way between the guard cell and the domain
- findIndex(R, Z)#
Finds the (x,z) index corresponding to the given (R,Z) coordinate
- Parameters:
R, Z (array_like) – Locations to find indices for
- Returns:
x, z – Index as a float, same shape as R,Z
- Return type:
(ndarray, ndarray)
- getCoordinate(xind, zind, dx=0, dz=0)#
Get coordinates (R,Z) at given (xind,zind) index
- Parameters:
xind, zind (array_like) – Indices in X and Z. These should be the same shape
dx (int, optional) – Order of x derivative
dz (int, optional) – Order of z derivative
- Returns:
R, Z – Locations of point or derivatives of R,Z with respect to indices if dx,dz != 0
- Return type:
(ndarray, ndarray)
- metric()#
Return the metric tensor, dx and dz
For this rectangular grid the metric is the identity
- Returns:
Dictionary containing: - dx, dz: Grid spacing - gxx, gxz, gzz: Covariant components - g_xx, g_xz, g_zz: Contravariant components
- Return type:
dict
- class zoidberg.poloidal_grid.StructuredPoloidalGrid(R, Z)#
Represents a structured poloidal grid in R-Z
- nx, nz
Number of points in x and z
- Type:
int
- R#
2D Numpy array of R coordinates
- Type:
ndarray
- Z#
2D Numpy array of Z coordinates
- Type:
ndarray
- Parameters:
R, Z (ndarray) – 2D Numpy arrays of R,Z points
Note
R,Z are not copied, so these arrays should not be modified afterwards
- findIndex(R, Z, tol=1e-10, show=False)#
Finds the (x, z) index corresponding to the given (R, Z) coordinate
- Parameters:
R, Z (array_like) – Locations. Can be scalar or array, must be the same shape
tol (float, optional) – Maximum tolerance on the square distance
- Returns:
x, z – Index as a float, same shape as R, Z
- Return type:
(ndarray, ndarray)
- getCoordinate(xind, zind, dx=0, dz=0)#
Get coordinates (R, Z) at given (xind, zind) index
- Parameters:
xind, zind (array_like) – Indices in X and Z. These should be the same shape
dx (int, optional) – Order of x derivative
dz (int, optional) – Order of z derivative
- Returns:
R, Z – Locations of point or derivatives of R,Z with respect to indices if dx,dz != 0
- Return type:
(ndarray, ndarray)
- metric()#
Return the metric tensor, dx and dz
- Returns:
Dictionary containing: - dx, dz: Grid spacing - gxx, gxz, gzz: Covariant components - g_xx, g_xz, g_zz: Contravariant components
- Return type:
dict
- zoidberg.poloidal_grid.grid_annulus(inner, outer, nx, nz, show=True, return_coords=False)#
Grid an annular region, given inner and outer boundaries both of which are RZline objects
This is a very simple algorithm which just draws straight lines between inner and outer boundaries.
- Parameters:
inner, outer (
RZline
) – Inner and outer boundaries of the domainnx (int) – The required radial resolution, including boundaries
nz (int) – The required poloidal resolution
show (bool, optional) – If True, plot the resulting grid
return_coords (bool, optional) – If True, return the R, Z coordinates of the grid points, instead of a
StructuredPoloidalGrid
- Returns:
A grid of the region
- Return type:
- zoidberg.poloidal_grid.grid_elliptic(inner, outer, nx, nz, show=False, tol=1e-10, align=True, restrict_size=20, restrict_factor=2, return_coords=False)#
Create a structured grid between inner and outer boundaries using elliptic method
Coordinates x = x(R, Z) and z = z(R,Z) obey an elliptic equation:
\[ \begin{align}\begin{aligned}d^2x/dR^2 + d^2x/dZ^2 = 0\\d^2z/dR^2 + d^2z/dZ^2 = 0\end{aligned}\end{align} \]where here x is in in the domain (0, 1) and z in (0, 2pi)
The above equations are inverted, giving:
\[ \begin{align}\begin{aligned}a*R_xx - 2*b*R_xz + c*R_zz = 0\\a*Z_xx - 2*b*Z_xz + c*Z_zz = 0\end{aligned}\end{align} \]where
\[ \begin{align}\begin{aligned}a &= R_z^2 + Z_z^2\\b &= R_z*R_x + Z_x*Z_z\\c &= R_x^2 + Z_x^2\end{aligned}\end{align} \]This is a nonlinear system of equations which is solved iteratively.
- Parameters:
inner, outer (
RZline
) – Inner and outer boundaries of the domainnx (int) – The required radial resolution, including boundaries
nz (int) – The required poloidal resolution
show (bool, optional) – Display plots of intermediate results
tol (float, optional) – Controls when iteration stops
align (bool, optional) – Attempt to align the inner and outer boundaries
restrict_size (int, optional) – The size (nx or nz) above which the grid is coarsened
restrict_factor (int, optional) – The factor by which the grid is divided if coarsened
return_coords (bool, optional) – If True, return the R, Z coordinates of the grid points, instead of a
StructuredPoloidalGrid
- Returns:
If return_coords is true, returns R,Z as arrays.
If return_coords is false, returns a
StructuredPoloidalGrid
object
References
https://www.nada.kth.se/kurser/kth/2D1263/l2.pdf https://en.wikipedia.org/wiki/Principles_of_grid_generation
zoidberg.progress module#
- zoidberg.progress.update_progress(progress, barLength=10, ascii=False, **kwargs)#
Displays or updates a console progress bar
Accepts a float between 0 and 1. Any int will be converted to a float. A value under 0 represents a ‘halt’. A value at 1 or bigger represents 100%
- Parameters:
progress (float) – Number between 0 and 1
barLength (int, optional) – Length of the progress bar
ascii (bool, optional) – If True, use ‘#’ as the progress indicator, otherwise use a Unicode character (the default)
zoidberg.rzline module#
Routines and classes for representing periodic lines in R-Z poloidal planes
- class zoidberg.rzline.RZline(r, z, anticlockwise=True)#
Represents (R,Z) coordinates of a periodic line
- R#
Major radius [m]
- Type:
array_like
- Z#
Height [m]
- Type:
array_like
- theta#
Angle variable [radians]
R
,Z
andtheta
all have the same length- Type:
array_like
- Parameters:
r, z (array_like) – 1D arrays of the major radius (
r
) and height (z
) which are of the same length. A periodic domain is assumed, so the last point connects to the first.anticlockwise (bool, optional) – Ensure that the line goes anticlockwise in the R-Z plane (positive theta)
Note that the last point in (r,z) arrays should not be the same
as the first point. The (r,z) points are in [0,2pi)
The input r,z points will be reordered, so that the
theta angle goes anticlockwise in the R-Z plane
- Rvalue(theta=None, deriv=0)#
Calculate the value of R at given theta locations
- Parameters:
theta (array_like, optional) – Theta locations to find R at. If None (default), use the values of theta stored in the instance
deriv (int, optional) – The order of derivative to compute (default is just the R value)
- Returns:
Value of R at each input theta point
- Return type:
ndarray
- Zvalue(theta=None, deriv=0)#
Calculate the value of Z at given theta locations
- Parameters:
theta (array_like, optional) – Theta locations to find Z at. If None (default), use the values of theta stored in the instance
deriv (int, optional) – The order of derivative to compute (default is just the Z value)
- Returns:
Value of Z at each input theta point
- Return type:
ndarray
- closestPoint(R, Z, niter=3, subdivide=20)#
Find the closest point on the curve to the given (R,Z) point
- Parameters:
R, Z (float) – The input R, Z point
niter (int, optional) – How many iterations to use
- Returns:
The value of theta (angle)
- Return type:
float
- distance(sample=20)#
Integrates the distance along the line.
- Parameters:
sample (int, optional) – Number of samples to take per point
- Returns:
An array one longer than theta. The first element is zero,
and the last element is the total distance around the loop
- equallySpaced(n=None)#
Returns a new RZline which has a theta uniform in distance along the line
- Parameters:
n (int, optional) – Number of points. Default is the same as the current line
- Returns:
A new
RZline
based on this instance, but with uniform theta-spacing- Return type:
RZline
- plot(axis=None, show=True)#
Plot the RZline, either on the given axis or a new figure
- Parameters:
axis (matplotlib axis, optional) – A matplotlib axis to plot on. By default a new figure is created
show (bool, optional) – Calls plt.show() at the end
- Returns:
The matplotlib axis that was used
- Return type:
axis
- position(theta=None)#
Calculate the value of both R, Z at given theta locations
- Parameters:
theta (array_like, optional) – Theta locations to find R, Z at. If None (default), use the values of theta stored in the instance
- Returns:
R, Z – Value of R, Z at each input theta point
- Return type:
(ndarray, ndarray)
- positionPolygon(theta=None)#
Calculates (R,Z) position at given theta angle by joining points by straight lines rather than a spline. This avoids the overshoots which can occur with splines.
- Parameters:
theta (array_like, optional) – Theta locations to find R, Z at. If None (default), use the values of theta stored in the instance
- Returns:
R, Z – Value of R, Z at each input theta point
- Return type:
(ndarray, ndarray)
- zoidberg.rzline.circle(R0=1.0, r=0.5, n=20)#
Creates a pair of RZline objects, for inner and outer boundaries
- Parameters:
R0 (float, optional) – Centre point of the circle
r (float, optional) – Radius of the circle
n (int, optional) – Number of points to use in the boundary
- Returns:
A circular
RZline
- Return type:
RZline
- zoidberg.rzline.line_from_points(rarray, zarray, show=False)#
Find a periodic line which goes through the given (r,z) points
This function starts at a point, and finds the nearest neighbour which is not already in the line
- Parameters:
rarray, zarray (array_like) – R, Z coordinates. These arrays should be the same length
- Returns:
An
RZline
object representing a periodic line- Return type:
RZline
- zoidberg.rzline.line_from_points_poly(rarray, zarray, show=False)#
Find a periodic line which goes through the given (r,z) points
This function starts with a triangle, then adds points one by one, inserting into the polygon along the nearest edge
- Parameters:
rarray, zarray (array_like) – R, Z coordinates. These arrays should be the same length
- Returns:
An
RZline
object representing a periodic line- Return type:
RZline
- zoidberg.rzline.shaped_line(R0=3.0, a=1.0, elong=0.0, triang=0.0, indent=0.0, n=20)#
Parametrisation of plasma shape from J. Manickam, Nucl. Fusion 24 595 (1984)
- Parameters:
R0 (float, optional) – Major radius
a (float, optional) – Minor radius
elong (float, optional) – Elongation, 0 for a circle
triang (float, optional) – Triangularity, 0 for a circle
indent (float, optional) – Indentation, 0 for a circle
- Returns:
An
RZline
matching the given parameterisation- Return type:
RZline
zoidberg.zoidberg module#
- zoidberg.zoidberg.fci_to_vtk(infile, outfile, scale=5)#
- zoidberg.zoidberg.make_maps(grid, magnetic_field, nslice=1, quiet=False, **kwargs)#
Make the forward and backward FCI maps
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objectnslice (int) – Number of parallel slices in each direction
quiet (bool) – Don’t display progress bar
kwargs – Optional arguments for field line tracing, etc.
- Returns:
Dictionary containing the forward/backward field line maps
- Return type:
dict
- zoidberg.zoidberg.make_surfaces(grid, magnetic_field, nsurfaces=10, revs=100)#
Essentially interpolate a poincare plot onto the grid mesh
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objectnsurfaces (int, optional) – Number of surfaces to interpolate to [10]
revs (int, optional) – Number of points on each surface [100]
- Returns:
Array of psuedo-psi on the grid mesh
- Return type:
surfaces
- zoidberg.zoidberg.parallel_slice_field_name(field, offset)#
Form a unique, backwards-compatible name for field at a given offset
- Parameters:
field (str) – Name of the field to convert
offset (int) – Parallel slice offset
- zoidberg.zoidberg.upscale(field, maps, upscale_factor=4, quiet=True)#
Increase the resolution in y of field along the FCI maps.
First, interpolate onto the (forward) field line end points, as in normal FCI technique. Then interpolate between start and end points. We also need to interpolate the xt_primes and zt_primes. This gives a cloud of points along the field lines, which we can finally interpolate back onto a regular grid.
- Parameters:
field (array_like) – 3D field to be upscaled
maps (dict) – Zoidberg field line maps
upscale_factor (int, optional) – Factor to increase resolution by [4]
quiet (bool, optional) – Don’t show progress bar [True]
- Returns:
Field with y-resolution increased *upscale_factor times. Shape is*
(nx, upscale_factor*ny, nz).
- zoidberg.zoidberg.write_Bfield_to_vtk(grid, magnetic_field, scale=5, vtkfile='fci_zoidberg', psi=True)#
Write the magnetic field to a VTK file
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objectscale (int, optional) – Factor to scale x, z dimensions by [5]
vtkfile (str, optional) – Output filename without extension [“fci_zoidberg”]
psi (bool, optional) – Write psi?
- Return type:
path - Full path to vtkfile
- zoidberg.zoidberg.write_maps(grid, magnetic_field, maps, gridfile='fci.grid.nc', new_names=False, metric2d=True, format='NETCDF3_64BIT', quiet=False)#
Write FCI maps to BOUT++ grid file
- Parameters:
grid (
zoidberg.grid.Grid
) – Grid generated by Zoidbergmagnetic_field (
zoidberg.field.MagneticField
) – Zoidberg magnetic field objectmaps (dict) – Dictionary of FCI maps
gridfile (str, optional) – Output filename
new_names (bool, optional) – Write “g_yy” rather than “g_22”
metric2d (bool, optional) – Output only 2D metrics
format (str, optional) – Specifies file format to use, passed to boutdata.DataFile
quiet (bool, optional) – Don’t warn about 2D metrics
- Return type:
Writes the following variables to the grid file